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Abstract

As a simple and passive means, particle damping provides vibration suppression with granular particles
embedded within their containing holes in a vibrating structure. Unlike in traditional damping materials,
mechanisms of energy dissipation of particle damping are primarily related to friction and impact
phenomena which are highly non-linear. In the research work reported in the paper we investigate elastic
beam and plate structures with drilled longitudinal holes filled with damping particles. Our focus is on the
form of damping due to shear friction induced by strain gradient along the length of the structure. We
present physical models to take into account of the shear frictional forces between particle layers and
impacts of the particles with the containing holes. A numerical procedure is presented to predict the
damping effect. Experimental tests of the beam and plate structures for various different damping
treatments are also conducted. Model predictions are validated by experimental results.

The particle damping is found to be remarkably strong for a broadband range. Moreover, the shear
friction is determined to be the major contributing mechanism of damping, especially at a high volumetric
packing ratio. The numerical and experimental findings suggest that the best damping effect might be
achieved by using a design of multiple particle chambers involving an appropriate combination of the
impact, friction and shear mechanisms, in contrast to a transverse-type particle or single-mass damper.
r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Particle damping is a passive damping concept to use metal or ceramic particles or powders of
small size (B0:05–5 mm in diameter) that are placed inside cavities within or attached to the
vibrating structure as illustrated schematically in Fig. 1. Metal particles of high density such as
lead or tungsten steel (as shown in Fig. 2) are the most common materials for better damping
performance. In contrast to viscoelastic materials which dissipate the stored elastic energy [1],
particle damping treatment focuses on energy dissipation in a combination of collision, friction
and shear damping [2,3]. It involves the potential of energy absorption and dissipation through
momentum exchange between moving particles and vibrating walls, friction, impact restitution,
and shear deformations. It is an attractive alternative in passive damping due to its conceptual
simplicity, potential effectiveness over broad frequency range, temperature and degradation
insensitivity, and very low cost [2–9].

Particle damping is a derivative of single-mass impact damper that has been thoroughly studied
over the years (e.g., Refs. [10,11]). In the single-mass case, direct analyses exist and reveal design
criterion for optimal efficiency based on reduction in system response. It is observed through
experiments that a plastic ‘‘bean bag’’ filled with lead shot exhibited much greater damping
effectiveness and ‘‘softer’’ impacts than a single lead slug of equal mass [12,13]. Additional
benefits of using granular materials instead of a single mass include the elimination of excessive
noise and potential damage to the interior wall of the containing hole. Although the initial test
results of the early 1990s substantiated the potential of particle damping [2–5], applications in the
literature have been largely based only on heuristic guidelines [3]. Due to the complex interactions
involved in particle damping, a comprehensive modelling and analysis tool is yet available [6–9].
This technology has been considered as a speciality area and the literature is relatively scarce. The
list of references of the paper represents an extensive but not exhaustive effort of literature survey
of the speciality technology.
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Fig. 1. Schematic of a beam with (a) transverse particle dampers or (b) longitudinal particle dampers.

Fig. 2. Metal particles as damping material: lead particles (left) and tungsten carbide particles (right).
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There have been some research efforts toward analytical or numerical models of the
complicated phenomenon of multi-grain particle damping [6,8]. Most noticeable efforts have
recently been given to the discrete element method (DEM) with some limited studies of particle
dampers [8,14–16]. This is a technique originally developed for the simulation of behavior of
granular materials [17,18]. Over the years, the DEM has found a wide range of applications in
various disciplines (see Refs. [19,20]). The procedure is an explicit process with small time step
iterations to determine resultant forces on any particle in the system. Because of the very large
number of particles in a typical particle damper, it appears that the concept of the damping
modelling on a particle-to-particle basis is a computationally intensive task [15,16], although it
offers the potential for a deeper understanding of the particle damping mechanisms.

In this paper, we study an elastic beam and a plate treated with particle damping for
suppression of vibrations. Fig. 1 shows the beam of a constant rectangular cross-section with
holes drilled along its length. Metal particles are filled within these longitudinal holes. We present
a numerical model for the analysis and characterization of the particle damping effect. In
particular, the model captures the dominant mechanisms of particle damping, including energy
dissipation by impact and friction during inter-particle and particle–wall collisions and by shear
action due to strain gradient in the longitudinally packed particles. This modelling capability
allows us to characterize the non-linear properties of particle damping and the relative
effectiveness of these damping mechanisms in terms of a host of parameters such as particle size,
packing density, and frequency and amplitude of excitation. Under different parameters of the
system, impact, friction and shear action may play a different role in providing a significant
portion of energy dissipation for vibration attenuation. The modelling technique is believed to be
important, since it would facilitate the development of design methods for achieving high
damping effect from the use of a minimal quantity of particles.

In this article we focus on the development of physical models for the different damping
mechanisms and of a numerical analysis of the vibration of the damped beam and plate structures
under forced excitation. Numerical results of the analysis will be presented. The results will be
compared with a set of experimental measurements of a beam and a plate with the particle
damping treatment. Thus, the modelling and analysis technique described in this paper is
experimentally validated.

2. The beam with particle damping treatment

In particle damping treatment of a beam, many containing holes (or cavities) may be used to
distribute particle material over the structure. There are two common arrangements in terms of
the orientation of the holes with respect to the direction of vibration motion: transversal and
longitudinal, as shown in Fig. 1. The transversal type is typical and has been studied in nearly all
the literature on particle damping [2–9]. One reason might be that the strain gradient along a
transversal hole could be neglected, thus simplifying the damping behavior of the particles. On the
other hand, the strain gradient along the longitudinal hole could cause a significant shear stress in
packed particles. While this phenomenon offers another mechanism for energy dissipation, it
increases the level of complexity in modelling and analysis of damping effects. We make a
particular effort in this study to include the shear action in order to make an assessment of its
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significance. The beam is chosen for this study, in part, because it is an infinite d.o.f. system as
opposed to the single d.o.f. systems usually studied in the literature [6–8,15,16]. When excited by a
shaker, the beam response could exhibit a large number of modes. This would allow us to
investigate the broadband effect of particle damping.

3. Particle characteristics

The application of particles is relatively simple. Metal or ceramic particles or powders of small
size are directly placed inside the containing holes with the holes partially or wholly filled. The size
of the particles is typically less than 1

5
of the hole size in diameter and is usually in the range

0.05–1 mm in diameter. Thus, it is not uncommon that a single hole may contain a large number
of particles in an order of 1000 or even 10 000. Metal particles of high density such as lead or
tungsten carbide cobalt are usually the best choice (Fig. 2). Within this size range, the particles are
considered non-cohesive.

3.1. Particle size

The photographs in Fig. 2 show that the lead particles are spheroidal while the shapes of
tungsten particles are quite irregular. In our numerical model, the particles are assumed to be
spherical and uniform in diameter. The sphere diameter f is defined with an average of the
measured minimal diameter of particles used. A number of past investigations have shown that
the shape of particles is not a significant factor once the particle size is less than 1

5
of the hole size

[8,9].

3.2. Internal physical parameters

For granular particles contained in a cavity, there exist two important parameters
characterizing the relationships of the internal stresses of the particle assembly. The first is the
internal coefficient of friction m [21]. Unlike its counterpart for the contact between two large
bodies, the internal friction coefficient of a particle assembly is typically higher and is measured
using a standard testing procedure to evaluate the shear force in the interface of two layers of the
particles [21]. In a similar fashion, the friction between the particles and the surface of their
containing wall is defined by another internal coefficient of friction mw: These internal friction
coefficients depend on the types of materials as well as on the particle size. Table 1 lists the
internal friction coefficients for particles of an average diameter f ¼ 0:1 mm for three different
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Table 1

Internal friction coefficient of particles ðf ¼ 0:1 mmÞ

Material

Aluminum Stainless steel Tungsten carbide

m 0.21 0.27 0.35
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materials, respectively [21], while in Table 2 the coefficients are shown to change when the particle
size changes.

Another important parameter is the pressure correlation coefficient Ka [21]. Essentially, it
defines the ratio of the normal stress in the horizontal direction to that in the vertical direction
when the particle assembly is subject to either a horizontal or a vertical pressure [21].

3.3. Packing of particles

Each containing hole may be filled with particles fully or partially. As shown in Fig. 3, a
containing hole has a total volume of Vc and its portion occupied by the filled particles is denoted
by Vt: Thus, we define the volumetric packing ratio Y as

Y ¼ Vt=Vc: ð1Þ

It should be noted that within the filled volume Vt of the containing hole there are unoccupied
cavity spaces between the particles. This may be measured by the particle filling ratio c defined as

c ¼ m=rVt ð2Þ

for a total mass m of the filled particles of mass density r: For spherical particles of radius r; we
may assume that the particles are packed in layers inside the containing hole. Then, it is easy to
find that the particle filling ratio has a minimum of cmin ¼ 52:36% and a maximum of cmax ¼
74:06%; respectively, corresponding to the particle arrangements shown in Fig. 4 [21]. At the
minimum filling, the distance between two adjacent particle layers is at maximum, smax ¼ 2r; while
at the maximum filling this distance is reduced to smin ¼ ð2

ffiffiffi
6

p
=3ÞrE1:633r:

In practical situations the particles do not arrange themselves in perfect layers and, in fact,
they should be considered to be packed randomly. During the course of a vibration, they
tend to get more packed from their initial packing state. This is a well-known fact [21]. In our
experience of packing the tungsten carbide particles ranging between f ¼ 0:1 and 0:5 mm within a
hole of 6 mm in diameter, the particle filling ratio reaches a maximum of approximately c ¼
62:5% when particles are repeatedly filled in the hole after a series of shaking motions until the
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Table 2

Internal friction coefficient of particles of different sizes

f (mm)

0.1 0.3 0.5

Tungsten carbide 0.35 0.40 0.47

Stainless steel 0.27 0.31 0.36

Whole Volume Vc

Volume Vt of 
Particles 

Fig. 3. A schematic of particles filled in a volume.
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volumetric packing ratio remains near 100%. Our finding is consistent with previous experimental
results [21].

Therefore, after some initial shaking and vibration, the particles could be considered being
packed with an approximate filling ratio of c ¼ 62:5%: If the particles were distributed in layers,
the distance between two adjacent layers s would be between the theoretical minimum and
maximum, 1:633r ¼ sminososmax ¼ 2r: The layer distance may be estimated with a linear
interpolation between these two theoretical limits such as

cmax � cmin

smin � smax

¼
cmax � c
smin � s

: ð3Þ

Thus, we have

s ¼ ð2:886 � 1:691cÞr ð4Þ

and at the practical filling limit of c ¼ 62:5%; the layer distance is estimated to be

s ¼ 1:83r: ð5Þ

This relation allows us to estimate a total number M of layers of particles for a given particle size,
hole geometry and its volumetric packing ratio Y:

4. Energy dissipation by frictional shear

In this section we describe a model for the energy dissipation due to shear forces between layers
of the particles. Within each longitudinal hole, the bending motion of the beam will induce strain
gradient along the length of the beam. Therefore, there exists a relative slip motion between
adjacent layers of particles. Given the frictional nature of granular materials, the internal slip
motion will cause frictional energy dissipation between the layers. This form of energy dissipation
provides another damping mechanism in additional to kinetic energy dissipation due to particle
impacts.

4.1. Transversal pressure

In order to evaluate the shearing friction forces, we first need to determine the transversal
pressure between the particle layers. Its analysis is based on a standard procedure of powder
mechanics [21]. Fig. 5 shows a longitudinal hole of radius R filled with particles of mass density r:
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Fig. 4. Particle layers of theoretical separation. (a) Minimum distance and (b) maximum distance.
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Along the transversal direction in z-axis, suppose the vertical pressure at vertical depth h to be Pv:
It is well established in powder and soil mechanics that the normal pressure is described by the
following differential form [21]:

dh ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð2R � hÞ

p
r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð2R � hÞ

p
� KaPvmw

dPv; ð6Þ

where Ka is the pressure correlation coefficient and mw is the internal friction coefficient between
the particles and the containing hole as defined in Section 3.2. Thus, it is easy to find a formula for
the normal pressure once we know the boundary condition at the top layer of the particles at
h ¼ h0: For example, for a fully packed hole of Y ¼ 1:0; we know that Pv ¼ 0 at h0 ¼ 0: Then, we
obtain

Pv ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð2R � hÞ

p
Kamw

r� exp �
hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hð2R � hÞ
p Kamw

 !" #
: ð7Þ

It is interesting to note that the normal pressure Pv along the transversal direction is highly non-
linear, depending on the particle mass density and the friction coefficient for the particle–wall
interface. In Fig. 6, the pressure is plotted along the transversal depth h for three cases of different
r: It shows that the pressure increases steadily from the top towards the bottom of the hole.
However, near the very bottom ðh ¼ 2RÞ; the normal pressure decreases rapidly and then vanishes
at the bottom surface. This phenomenon is related to a unique property of granular materials that
the internal friction between the particle–particle interface and the particle–wall interface forms a
local energy state of the particle arrangements far from the globally minimal energy state [19–22].
Figs. 6 and 7 show how the vertical pressure changes with respect to different values in the particle
mass density and the internal coefficient of friction of the particle–wall interface.

4.2. Shear energy

Given the transversal pressure between layers of particles, we may model the energy dissipation
by the frictional shear as follows. For simplicity, we treat the particles in their layer formation
during the bending motion of the beam, with a total of M layers. For two adjacent particle layers
ði � 1Þ and ðiÞ as shown in Fig. 8 ði ¼ 1;y;MÞ; the shear strain of the beam at the interface
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Fig. 5. Vertical pressure in the particles.
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position yi between the layers is denoted by esðx; yiÞ: At this position yi; the interface plane of the
two layers has a width bðyiÞ: Therefore, energy dissipation due to the interfacial friction between
these two layers is described by

Ei ¼
Z L

0

esðx; yiÞmPvð yiÞbð yiÞ dx; ð8Þ

ARTICLE IN PRESS

0 0.002 0.004 0.006 0.008 0.01 0.012
0

10

20

30

40

50

60

70

80

90

100

Deep h (m) %

V
er

tic
al

 P
re

ss
ur

e 
P

v 
(N

/m
 2

)

Fric. Coe. = 0.1
Fric. Coe. = 0.2
Fric. Coe. = 0.3

Fig. 7. Vertical pressure along the depth of the hole for three different friction coefficient values of mw; with Ka ¼ 0:7;
r ¼ 10 000 kg=m3; and R ¼ 6 mm:

0 0.002 0.004 0.006 0.008 0.01 0.012
0

10

20

30

40

50

60

70

80

90

Deep h (m) %

V
er

tic
al

 P
re

ss
ur

e 
P

v 
(N

/m
2

)

Particle Density = 10000kg/m3

Particle Density = 5000kg/m3

Particle Density = 2000kg/m3

Fig. 6. Vertical pressure along the depth of the hole for three different particle densities, with Ka ¼ 0:7; mw ¼ 0:3; and

R ¼ 6 mm:

Z. Xu et al. / Journal of Sound and Vibration 279 (2005) 1097–11201104



where L is the length of the beam and Pv is described by Eq. (6). Summing over all layers of
particles, the shear energy dissipation of the particles is given as

Es ¼
XM
i¼1

Z L

0

esðx; yiÞmPvð yiÞbð yiÞ dx: ð9Þ

5. Particle impacts

During the vibration of the beam, the particles may impact with the surface of the containing
hole if there exists any gap (i.e., when Yo100%) as shown in Fig. 9. Furthermore, the particles
may collide with each other. Each collision will result in kinetic energy dissipation since the
particles are not perfectly elastic. This form of ‘‘kinetic damping’’ has been regarded as a unique
feature of particle damping, when using either a single mass or granular materials [2–16].

The particle–particle and particle–wall collisions bring a considerably high level of complexity
for their modelling and damping analysis, especially for particle dampers of transversal holes
lightly filled with small-size particles [6–9]. When the motions of particles are modelled as
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a two-phase dense flow or on a particle–particle basis, the computational complexity is bound to
be overwhelming [14–18]. We seek a more appropriate model in this study.

In our beam–damper system the particles are packed in a longitudinal hole. The open space
unoccupied by the particle material is relatively small, especially for a high volumetric packing
ratio Y: The effect of impact of the particles with the containing hole is approximated by a
simplified representation of a single row of spheres of a larger diameter as illustrated in Fig. 10.
The total mass of these representative spheres would be equal to the sum of the masses of the
original particles. Furthermore, only the impacts of these spheres with the wall of the hole are
considered. The spheres are assumed to vibrate in the transversal direction only. Thus,
interactions between the spheres are not represented. This is a simplification that has been
employed previously in Ref. [23]. It was experimentally validated to be acceptable with a
reasonable level of accuracy.

With this model of impacting spheres, we can readily apply a collision model to determine
energy dissipation during a sphere–wall impact. Such a model has been a key element in the
research works on multi-body dynamics [24] and granular materials [25] reported in a vast
literature. We adapt the classical Hertz model considering the material parameters of Young’s
modulus and Poisson’s ratio, as reported in our earlier works [15,16]. Since the model is rather
standard, we leave out its details here.

Inside the longitudinal hole of the beam, the vibrating particles would practically generate
impact forces normal to the surface of the hole and distributed over the entire area of contact
between the particles and the hole. This is schematically shown in Fig. 11. Our model of impacting
spheres would approximate only the net effect of the distributed forces as vertical forces and
distributed only on the bottom line of the cylindrical hole. The distribution of the impacting forces
would be predicted in relation to the motion of the beam.
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Fig. 10. Representation of particles for impact modelling.
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Fig. 11. Impacting force on the cavity wall. (a) Realistic distribution of impacting forces, and (b) impact force

representation in the model.
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6. Numerical calculation of beam response

With the models of shear friction and particle impacts described above, we are ready to develop
a numerical procedure for calculating the response of the beam treated with the particle dampers
for its free vibration or forced response. This would allow us to predict the effects of particle
dampers and to conduct parametric studies of their performance.

6.1. The beam equation

For our numerical and experimental investigations, we use a free–free beam of a constant
cross-section with longitudinal particle holes as depicted in Fig. 12.

If the longitudinal holes drilled in the beam have little effect on the principal modal motions of
the beam (as experimentally verified and described in Section 7), the treated beam can be
described as a Bernoulli–Euler beam. We may use a loss factor Z to describe the internal damping
in the beam, including the shear energy loss due to frictional shear action of the particles as
modelled in Section 4. The loss factor depends on the longitudinal position, i.e., Z ¼ Zðx; tÞ: The
loss factor can be incorporated in the complex elastic modulus Eð1 þ iZÞ of the beam. In addition
to the frictional shear damping, the particle impacting forces as modelled in Section 5 are
explicitly defined acting on the beam such that

F ðx; tÞ ¼
Xn

j¼1

fð j;tÞdðx � ajÞ; ð10Þ

where aj indicates the position of the contact force of jth impacting sphere along the length of the
beam for a total of n spheres as described in Section 5. Thus, the dynamic response of the beam is
described by the following standard beam equation:

@2

@x2
Eð1 þ iZÞJ

@2y

@x2

	 

þ rbA

@2y

@t2
¼ F þ G; ð11Þ

where rb is the mass density of the beam, A is the cross-sectional area, J is the moment of inertia
of the cross-section, and G is the point excitation force. The beam response yðx; tÞ can be solved in
terms of the principal modes of the beam in a numerical iteration process to be described below.
As a standard procedure, for example, the initial conditions of the beam are given as

yðx; 0Þ ¼ f1ðxÞ;
@y

@t

����
t¼0

¼ f2ðxÞ: ð12Þ

Between a small time interval Dt of numerical simulation, we may use a constant value for Z and
for an impacting force. For brevity, we use the case of a single impacting force acting at a as an
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Fig. 12. A sketch of the test beam (a) with a point force applied (b).
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example. Then,

F ðaÞ ¼ fðaÞdðx � aÞ ð13Þ

and the forced response is expressed by

Y ðx; tÞ ¼
Xp
k¼1

YkðxÞ exp �
Z
2
okt

� 

Ck cosðoktÞ þ Dk sinðoktÞ
��

þ
1

ð1 þ Z2=4Þo2
k

faYkðaÞ exp
Z
2
okt

� 

� cos ½okt� �

Z
2

sin½okt�
� 
��

; ð14Þ

where

Ck ¼
Z l

0

rbA f1ðxÞYkðxÞ dx; Dk ¼
1

ok

Z l

0

rbA f2ðxÞYkðxÞ dx þ
Z
2

ak ð15Þ

and ok is the kth natural frequency and Yk represents the kth modal shape of the beam [26].
However, the beam response is coupled with the loss factor of the internal damping and the
energy dissipation of particle–hole impacts. The non-linear nature of the particle damping
requires an iterative procedure to obtain the beam response over a given period of time.

6.2. Iterative procedure of simulation

The iterative procedure for numerical calculation of beam motion as well as the shear and
impact damping is similar to a technique used in the DEM often found in the literature of
granular materials and particle technology [16–20]. The motions of the beam and the particle are
calculated through a cycling process of small time steps Dt: As the beam vibrates causing the shear
strain and oscillations in the particles, the shear frictional forces would increase between the
particle layers and the particles may collide with the containing wall as well (as predicted by using
their representing spheres). These phenomena will dissipate energy from the beam, thus providing
a combined damping effect that will act on the beam in turn. Thus, in the end of each time step Dt;
the internal loss factor as well as the impacting forces is updated as a result of the beam motion.
The cycle of beam and particle motion calculation is repeated for the next time step. The iterative
procedure is summarized in the flow chart of Fig. 13. This incremental updating scheme was fully
described in Ref. [17] and it has been widely tested in the literature [18–20], showing that it is
reasonably accurate and stable when the time step Dt is properly chosen. In our numerical
investigation, we found that it is satisfactory to use Dt ¼ 2:0 � 10�5 s:

7. Experimental investigation

We have conducted an experimental investigation of the damped beam system to verify our
numerical model and to make an assessment of the performance of the particle damping. A steel
beam specimen is sketched in Fig. 12 with dimensions of L ¼ 500 mm; W ¼ 50 mm; and H ¼
15 mm: The steel beam is specified with a mass density of 7800 kg=m3; an elastic modulus of
2 � 1011 N=m2; and Poisson ratio of 0.3. The beam mass is 2:925 kg: Three longitudinal holes of
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Fig. 13. Flow chart of the iterative numerical procedure.
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6 mm in diameter are drilled through the beam with their ends tapped for set screws, reducing the
beam mass to 2:594 kg: The beam is suspended with four soft springs.

The beam is excited using a modal shaker with its location shown in Fig. 14. Three different
locations on the beam are chosen for measuring the beam response as indicated in Fig. 14. The
experimental set-up is illustrated in Fig. 15 with a description of measurement instruments used.

7.1. Test procedure

Our test procedure is as follows:

1. A broadband random excitation is applied to the beam with a maximum frequency of 6:4 kHz
and an excitation force amplitude of 10 N: This would reveal the frequency characteristics of
the beam. This test is performed separately on the solid beam (without damper holes), the
drilled beam (without any particles), and the beam with different particle arrangements.

2. For each test arrangement, the half-power bandwidth method is applied to measure the
damping ratio for a specified measurement point. Namely, z ¼ Do=2on; similar to the
approach taken in Refs. [7,9].

3. Tungsten carbide particles are used in the damping tests. Particles of three different sizes of
f ¼ 0:1; 0.3, and 0:5 mm are filled inside the holes in three different volumetric packing ratios
of Y ¼ 50%; 90%, and 100%, respectively. Identical arrangements are made for all three holes.
Density of the tungsten carbide material is 16 300 kg=m3: At the full-packing ratio of 100%,
the total particle mass is measured to be 432, 428, and 426 g for the three particle sizes,
respectively, leading to a ratio of the particle mass to the solid beam mass of 14.77%, 14.63%,
and 14.56%, respectively.

7.2. Modal characteristics of the beam

The first set of tests is to determine the modal characteristics of the original solid beam and the
drilled beam but with empty holes. The frequency responses of the beams under the broadband
random excitation are shown in Fig. 16(a) as measured at the first measurement point. While the
original solid beam has natural frequencies on at 331.6, 914.1, 1792.0, 2962.3, 4425.2, and
6180:7 Hz for the first six modes, the empty longitudinal holes make relatively small changes in
the first five modes. The amplitudes at the resonance frequencies decrease with the drilled holes,
on an average of 3.5%.

It is noticed that the test of the drilled beam shows an additional natural frequency at 5100 Hz
which is absent from the original solid beam. A direct analysis using the Bernoulli–Euler beam
theory shows that no such mode exists for bending motion. Therefore, we have performed a FEM
analysis of the drilled beam, which predicts a torsional mode at 5074 Hz: Its modal shape of FEM
analysis is shown in Fig. 16(b). Apparently, this modal shape in torsion got excited in the test of
the drilled beam, but it was not at the first test of the solid beam. This peculiar situation was
examined in Ref. [27].

Next, another set of tests is conducted for various combinations of particle size and volumetric
packing ratio. Fig. 17 shows the effect of the added particles in attenuating the frequency response
over the range of the first six modes for a case of 0:5 mm particles with Y ¼ 100% at the first
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measurement point. The damping ratio at each resonance is summarized in Table 3. From the
table and Fig. 17, we observed that the damping performance of the particles is remarkable and
extremely high. The level of damping even reaches zE10% for the fifth mode. Such a strong
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Fig. 17. Acceleration amplitude (dB) of the drilled beam with and without the particles.

Table 3

Damping ratio of the beam

Mode

1st 2nd 3rd 4th 5th

Without particles 0.00298 0.00250 0.000571 0.00112 0.00113

With particles 0.0128 0.00402 0.0649 0.0354 0.101
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Fig. 16. (a) Acceleration amplitude (dB) of the beam with and without the damper holes. (b) A torsional mode of the

beam at 5074 Hz:
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damping effect has been consistently observed in particle dampers of other types of arrangements
[2,6–14,22] as well. It is also typical in other cases of the parameter combination of our
longitudinal damper discussed below.

It is further noticed that the added particles have virtually no effect on the torsional mode of the
drilled beam of 5100 Hz for this particular case as shown in Fig. 17. Our physical and numerical
models developed above are based on bending motion only, thus they cannot make any feasible
prediction for this particular mode. Apparently, this mode is excited but the dampers are not
effective. For other experimental tests (as discussed below), this torsional mode is also observed.
The question about longitudinal particle dampers for suppression of torsional vibrations needs
further study.

7.3. Comparison of numerical and experimental results

We have conducted a complete set of tests for each of the three particle sizes and each of the
three volumetric packing ratios with a total of 27 combinations of the parameters. For each test
case, the damping effect is also predicted with our numerical model. The numerical and
experimental results of these cases are given in Table 4 in terms of the damping ratio at the first
measurement point location.
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Table 4

Damping ratio of model prediction and experiments

Particle diameter (mm) Method Y (%) Mode

1st 2nd 3rd 4th 5th

0.1 Experiment 50 0.00820 0.00133 0.00321 0.00228 0.0336

90 0.00744 0.00302 0.00494 0.00540 0.0445

100 0.00553 0.00151 0.00355 0.00358 0.0448

Theory 50 0.0056 0.0035 0.0052 0.0049 0.034

90 0.0069 0.0042 0.0074 0.0092 0.040

100 0.0038 0.0040 0.0058 0.0073 0.0333

0.3 Experiment 50 0.0107 0.00234 0.0207 0.0167 0.0339

90 0.0101 0.00241 0.0432 0.0288 0.0498

100 0.00833 0.00291 0.039 0.0308 0.0622

Theory 50 0.014 0.0031 0.018 0.0125 0.0285

90 0.020 0.0068 0.036 0.0329 0.0371

100 0.011 0.0072 0.027 0.0418 0.0528

0.5 Experiment 50 0.0101 0.00292 0.0247 0.0176 0.0458

90 0.0118 0.00323 0.0486 0.0346 0.0984

100 0.0128 0.00402 0.0649 0.0354 0.101

Theory 50 0.0131 0.00351 0.0301 0.0169 0.0652

90 0.0152 0.00483 0.0520 0.0231 0.0938

100 0.0176 0.00629 0.0764 0.0364 0.0910
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Overall the numerical predictions agree with the experimental results very well. There are some
specific observations worthy pointing out:

1. While the particle damping is significant for every mode of interest, it has a remarkably high
effect for the fifth mode at 4425 Hz: The highest level of damping ratio reaches 10.1%, an
increase of two orders of magnitude form that of the original beam. In our design of the
experimental tests, simple guidelines were used and there were no optimization considerations.
Clearly, the particular particle dampers are better suited for higher frequency range. Currently,
we are pursuing a design methodology for optimization of particle damping.

2. Among the three particle sizes of 0.1, 0.3, and 0:5 mm in diameter, the relative errors between
the model prediction and the experimental results are the least for the cases of 0:5 mm in size. It
is also noticed that the damping ratio of model prediction tends to be higher than the
experimental observation. Precise reasons for these features of the prediction error are yet
understood, although we may speculate that our model of impacting spheres may overestimate
the actual amount of particles participating in impacts with the beam while the vibration of the
beam gets continuously attenuated over time. This is a rather complex situation and it needs
further study, perhaps with a more sophisticated model such as the discrete element model on a
particle–particle basis [15,16].

In Figs. 18–20, the frequency response over the entire range of the first six modes is shown with
both the model prediction and the experimental data for the three particle sizes, respectively. The
volumetric packing ratio is set at 100%. At the full-packing ratio, the major damping mechanism
is the frictional shear between layers of the particles due to the longitudinal strain gradient as
modelled in Section 4. There are seldom impacts of the particles on their containing holes. This is
the favorable situation for our model and it shows in these figures that the model prediction agrees
well with the experimental data. Again, in the experiments the torsional mode near 5100 Hz was
excited, resulting in a sharp peak at the frequency and a higher response near the frequency in
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Fig. 18. Comparison between the test and the numerical results of frequency response for F ¼ 0:1 mm with a

volumetric packing ratio of 100%.
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Figs. 18–20. This is the primary reason for the difference between the numerical and experimental
results shown in the figures.

8. Investigation of a plate

Another example for our numerical and experimental investigation is a plate structure. A steel
plate specimen is sketched in Fig. 21(a) with dimensions of 300 mm in length, 300 mm in width,
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Fig. 19. Comparison between the test and the numerical results of frequency response for F ¼ 0:3 mm with a

volumetric packing ratio of 100%.
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Fig. 20. Comparison between the test and the numerical results of frequency response for F ¼ 0:5 mm with a

volumetric packing ratio of 100%.
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and 13 mm in thickness. The material is the same with the steel beam. Four holes of 6 mm in
diameter are drilled and uniformly spaced in both the longitudinal and the latitudinal directions.
The test plate is suspended with four soft springs. The locations of excitation and measurements
are indicated in Fig. 21(b). The total volume of the eight holes counts for 5.8% of the volume of
the plate. Thus, it is expected that these hole have a minor effect on the modal characteristics of
the plate. A FEM analysis reveals the first eight natural frequencies of the drilled plate at 460.87,
677.36, 865.95, 1226.2, 2208.4, 2408.4, 2727.9, and 3716.3, respectively.

The particle holes are packed with the same tungsten carbide particles used for the beam tests
with the particle size of f ¼ 0:5 at full volumetric packing ratio of Y ¼ 100%: Two different
patterns of particle filling are arranged. In the first arrangement, all holes are fully filled to their
full length. The total particle mass is 671 g; which has a ratio of 7.6% to the mass of the drilled
plate. In the second arrangement, a slightly over a quarter of the plate is treated with three holes in
either direction filled in 3

5 of their length as shown in Fig. 21(c). The total particle mass is 402 g;
being 4.55% of the mass of the drilled plate. The treated portion of the plate contains the
excitation point.

In Figs. 22 and 23 experimental results of frequency response in acceleration amplitude at the
measurement locations #2 and #4 are shown over the entire range of the first eight modes for both
cases of filling patterns. Responses at other two measurement locations are similar. We have two
main observations from the experimental results. First, the damping performance of the particles
is remarkably high especially in a high frequency range over 1500 Hz: For the lower resonance
frequencies, the damping effect is not as high as usual. Second, the level of damping of the second
arrangement of filling pattern is nearly as significant as in the first arrangement case. With the use
of a little over half of the particles, nearly the same damping effect is achieved. It is noted that the
particles holes of the second arrangement surround the excitation point. From a viewpoint of
energy flow it seems that these particle dampers had a good chance to absorb the excitation
energy. However, damper optimization is a subject of further study.
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We also developed physical and numerical modelling techniques for the plate structure. The
same shear friction and particle impact models also apply to the plate, while the standard plate
bending equations are used in numerical calculation of structural response [26]. The iterative
numerical solution procedure for the plate is essentially the same with that shown in Fig. 13.
These numerical details shall be omitted here.

The results of model prediction and experimental testing at the measurement locations #2 and
#4 are presented in Figs. 24 and 25 for the first damper arrangement and in Figs. 26 and 27 for the
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Fig. 23. Acceleration amplitude of the plate at measurement point #4 under different conditions of particle filling

arrangements.

Z. Xu et al. / Journal of Sound and Vibration 279 (2005) 1097–11201116



ARTICLE IN PRESS

0 1000 2000 3000 4000
-40

-20

0

20

40

A
m

pl
itu

de
  (

dB
 )

Frequency (Hz) 

Experiment Result 
 Theory Result 

Fig. 24. Model prediction and experimental result of acceleration amplitude of the plate at measurement point #2 for

the first damper arrangement.
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Fig. 25. Model prediction and experimental result of acceleration amplitude of the plate at measurement point #4 for

the first damper arrangement.
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Fig. 26. Model prediction and experimental result of acceleration amplitude of the plate at measurement point #2 for

the second damper arrangement.
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second damper arrangement, all in acceleration amplitude. Overall, the model predictions agree
very well with the experimental results. Within the frequency range up to 4000 Hz; their difference
in acceleration amplitude is less than 10 dB:

More complete results of these experiments of beams and plates have been described in Ref.
[27], where various transient behaviors of the vibrating systems under the particle damping
treatments were further examined. Test results with a number of arrangements of the packed
particles including different particle sizes and volumetric packing ratios are discussed there,
showing that particle damping is highly non-linear while being remarkably effective within a
broadband range [27].

9. Conclusions

The focus of this investigation is on a damping enhancement method with particulate materials.
An elastic beam is treated with longitudinal holes embedded with metal particles. We have
presented a physical model to take into account of the shear frictional forces between particle
layers. Another model representing the impacts of the particles with the containing holes is also
developed. Unlike traditional damping materials, the particle damping, in a form of friction and
impact energy dissipation, is highly non-linear. A numerical procedure is presented in the paper
for characterization of the damping effect. With these modelling tools, we performed numerical
predictions for the beam structure with a number of arrangements of the packed particles
including different particle sizes and volumetric packing ratios. The beam structure with the
different damping treatments was experimentally tested. The experimental results validated the
model predictions of the damping ratio of the damped beam. The numerical and experimental
evaluations are also performed for an elastic plate with the particle damping treatment.

The particle damping is found to be remarkably effective. Although it is non-linear, a strong
rate of energy dissipation is achieved within a broadband range. Moreover, the shear friction is
determined to be the major contributing mechanism, especially at a high volumetric packing ratio
near or at 100%. Our numerical and experimental findings should establish a significant role of
shear frictional forces in utilization of the particle damping concept, especially when compared
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Fig. 27. Model prediction and experimental result of acceleration amplitude of the plate at measurement point #4 for
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with a transverse-type impact damper, such as a single-mass impact damper, where the damping
mechanisms are dominated by the impact related phenomena [15,16,28]. Thus, the best damping
effect might be achieved by using a design of different type of particle chambers involving an
appropriate combination of impact, friction and shear mechanisms. Our current research is
towards this direction.
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